Write $G=\cup_{i} x_{i} H$. First assume char $k \nmid[G: H]$. Since $k G=\oplus_{i} x_{i} k H$, any $\alpha \in \operatorname{rad} k G$ can be written in the form $\Sigma x_{i} \alpha_{i}$ where $\alpha_{i} \in k H$. We claim that each $\alpha_{i} \in \operatorname{rad} k H$. Indeed, consider any simple $k H$-module W. Then, $k G \otimes_{k H} W$ is a semisimple $k G$-module, so $0=\alpha \cdot k G \otimes_{k H} W \supseteq \Sigma x_{i} \alpha_{i} \otimes_{k H} W=\Sigma x_{i} \otimes \alpha_{i} W$. This implies that $\alpha_{i} W=0$ for all i, so $\alpha_{i} \in \operatorname{rad} k H$. We have now shown that $\operatorname{rad} k G \subseteq k G \cdot \operatorname{rad} k H$, and the reverse inclusion follows from $k H \cap \operatorname{rad} k G=\operatorname{rad} k H$. (Note that the work above actually yields an explicit dimension equation: $\operatorname{dim}_{k} \operatorname{rad} k G=$ $[G: H] \operatorname{dim}_{k} \operatorname{rad} k H$.)
For the converse, let us now assume that $\operatorname{rad} k G=k G \cdot \operatorname{rad} k H$. Consider the group algebra $R=k[G / H]$ as a left $k G$-module (via the action of G on G / H). Since H acts as the identity on R, the augmentation ideal of $k H$ acts as zero, and therefore so do $\operatorname{rad} k H$ and $\operatorname{rad} k G=k G \cdot \operatorname{rad} k H$. We can then view R as a $k G / \mathrm{rad} k G$-module. Since $k G / \operatorname{rad} k G$ is a semisimple ring, R is a semisimple $k G / \mathrm{rad} k G$-module. Therefore, R is also a semisimple module over $k G$ and over R, so R is itself a semisimple ring. Now we have that char $k \nmid[G: H]$.

