

Write $G = \bigcup_i x_i H$. First assume $\text{char } k \nmid [G : H]$. Since $kG = \bigoplus_i x_i kH$, any $\alpha \in \text{rad } kG$ can be written in the form $\sum x_i \alpha_i$ where $\alpha_i \in kH$. We claim that each $\alpha_i \in \text{rad } kH$. Indeed, consider any simple kH -module W . Then, $kG \otimes_{kH} W$ is a semisimple kG -module, so $0 = \alpha \cdot kG \otimes_{kH} W \supseteq \sum x_i \alpha_i \otimes_{kH} W = \sum x_i \otimes \alpha_i W$. This implies that $\alpha_i W = 0$ for all i , so $\alpha_i \in \text{rad } kH$. We have now shown that $\text{rad } kG \subseteq kG \cdot \text{rad } kH$, and the reverse inclusion follows from $kH \cap \text{rad } kG = \text{rad } kH$. (Note that the work above actually yields an explicit dimension equation: $\dim_k \text{rad } kG = [G : H] \dim_k \text{rad } kH$.)

For the converse, let us now assume that $\text{rad } kG = kG \cdot \text{rad } kH$. Consider the group algebra $R = k[G/H]$ as a left kG -module (via the action of G on G/H). Since H acts as the identity on R , the augmentation ideal of kH acts as zero, and therefore so do $\text{rad } kH$ and $\text{rad } kG = kG \cdot \text{rad } kH$. We can then view R as a $kG/\text{rad } kG$ -module. Since $kG/\text{rad } kG$ is a semisimple ring, R is a semisimple $kG/\text{rad } kG$ -module. Therefore, R is also a semisimple module over kG and over R , so R is itself a semisimple ring. Now we have that $\text{char } k \nmid [G : H]$.