To prove the last part of the Exercise, let $J=\sum_{a \in G^{\prime}}(a-1) k G$. Since G^{\prime} is normal in G, we have for any g in G and a in $G^{\prime}: g(a-1) k G=\left(g a g^{-1}-1\right) g \cdot k G \subseteq J$, so J is an ideal in $k G$. The same method can be used to show that $R / J \sim k G$. From this, we conclude easily that $I=J$.

