To prove the last part of the Exercise, let $J = \sum_{a \in G'} (a-1)kG$. Since *G'* is normal in *G*, we have for any *g* in *G* and *a* in *G'*: $g(a-1)kG = (gag^{-1} - 1)g \cdot kG \subseteq J$, so *J* is an ideal in *kG*. The same method can be used to show that $R/J \sim kG$. From this, we conclude easily that I = J.