Since the three irreducible complex representations of $G=S_{3}$ can be defined over Q , we know that Q is a splitting field for G. The dimension equation $|G|=\Sigma \chi_{i}(1)^{2}$ here is $6=1^{2}+1^{2}+2^{2}$, so we have $\mathrm{Q} G \sim \mathrm{Q} \times \mathrm{Q} \times \mathrm{M}_{2}(\mathrm{Q})$.
The three central idempotents of $\mathrm{Q} G$ giving such a decomposition can be computed from the character table of S_{3}. They are:
$e 1=\{(1)+(123)+(132)+(12)+(23)+(13)\} / 6$,
$e 2=\{(1)+(123)+(132)-(12)-(23)-(13)\} / 6$,
$e 3=1-e 1-e 2=(1) * 2 / 3-(123) / 3-(132) / 3$.

