Conditions

Suppose $f(x)=(8-5 x) e^{\wedge} x$
(critical number: 3/5)
B) use interval notation to find where $f(x)$ is increasing and decreasing
C) Use interval notion where $f(x)$ is concave up and concave down
D) List values of inflection

Solution

Let's analyze the intervals of increasing and decreasing:
$f^{v}(x)=8 e^{x}-5 e^{x}-5 x e^{x}=e^{x}(3-5 x)$
We can really see, that the critical number is $3 / 5$.
From the left side of this point, the derivative is positive, so our function is increasing there.
From the right side - the opposite situation.
We can make a conclusion, that $f(x)$ increasing at:
$x \in\left(-\infty, \frac{3}{5}\right)$

Decreasing at:
$x \in\left(\frac{3}{5}, \infty\right)$
The information about where is our function concave up or down can give us the $2^{\text {nd }}$ derivative:
$f^{v \prime}(x)=3 e^{x}-5 e^{x}-5 x e^{x}=-e^{x}(2+5 x)$
The critical value is $-2 / 5$. From the right side of this value, the derivative is negative, so the function is concave up. From the left side - the opposite situation.

We can make a conclusion, that $f(x)$ concave up at:
$x \in\left(-\frac{2}{5}, \infty\right)$

Concave down at:
$x \in\left(-\infty,-\frac{2}{5}\right)$
The only value of inflection is the point $-2 / 5$

