Simplify the square root of the following:
We will perform the next operations with square roots
$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
$\sqrt{a * b}=\sqrt{a} * \sqrt{b}$
$\sqrt{a^{2}}=a$
Those rules are true for any positive numbers a and b
$\sqrt{\frac{3}{27}}=\sqrt{\frac{1}{9}}=\frac{\sqrt{1}}{\sqrt{9}}=\frac{1}{\sqrt{3^{2}}}=\frac{1}{3}$
$\sqrt{\frac{3}{12}}=\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{2^{2}}}=\frac{1}{2}$
$\sqrt{\frac{20}{5}}=\sqrt{4}=\sqrt{2^{2}}=2$
Also we can go another way: first break root on the root of the numerator and denominator take a square root and cut the remaining square roots

$$
\begin{aligned}
& \sqrt{\frac{45}{5}}=\frac{\sqrt{45}}{\sqrt{5}}=\frac{\sqrt{9 * 5}}{\sqrt{5}}=\frac{\sqrt{9} * \sqrt{5}}{\sqrt{5}}=\sqrt{9}=\sqrt{3^{2}}=3 \\
& \sqrt{\frac{2}{50}}=\frac{\sqrt{2}}{\sqrt{50}}=\frac{\sqrt{2}}{\sqrt{25 * 2}}=\frac{\sqrt{2}}{\sqrt{25} * \sqrt{2}}=\frac{1}{\sqrt{25}}=\frac{1}{\sqrt{5^{2}}}=\frac{1}{5} \\
& \sqrt{\frac{63}{7}}=\sqrt{9}=3 \\
& \sqrt{\frac{32}{8}}=\sqrt{4}=2 \\
& \sqrt{\frac{27}{75}}=\sqrt{\frac{3 * 9}{3 * 25}}=\sqrt{\frac{9}{25}}=\frac{\sqrt{9}}{\sqrt{25}}=\frac{3}{5}
\end{aligned}
$$

$$
\sqrt{0.0081}=\sqrt{\frac{81}{10000}}=\frac{\sqrt{9^{2}}}{\sqrt{100^{2}}}=\frac{9}{100}=0.09
$$

