if $2^{\wedge} x=3^{\wedge} y=12^{\wedge} z$ then $x+2 y / x y=$? without using log

First:

$$
\begin{gather*}
2^{x}=3^{y}=12^{z} \\
3^{y}=12^{z} \\
3^{y}=2^{2 z} \cdot 3^{z} \\
2^{2 z}=\frac{3^{y}}{3^{z}} \\
2^{2 z}=3^{y-z} \tag{1}
\end{gather*}
$$

Second:

$$
\begin{gathered}
2^{x}=\left.3^{y}\right|_{2^{2 x z}}=3^{2 y z} \text { multiply by } 2 z \\
\end{gathered}
$$

Use equation (1):

$$
\begin{align*}
& 3^{(y-z) x}=3^{2 y z} \\
& (y-z) x=2 y z \\
& x=\frac{2 y z}{y-z} \tag{2}
\end{align*}
$$

Third:

$$
\frac{x+2 y}{x y}=\frac{1}{y}+\frac{2}{x}
$$

Use equation (2):

$$
\begin{aligned}
& \frac{x+2 y}{x y}=\frac{1}{y}+\frac{2}{\frac{2 y z}{y-z}} \\
& \frac{x+2 y}{x y}=\frac{1}{y}+\frac{y-z}{y z}
\end{aligned}
$$

Reduce right side to a common denominator:

$$
\begin{gathered}
\frac{x+2 y}{x y}=\frac{z}{y z}+\frac{y-z}{y z} \\
\frac{x+2 y}{x y}=\frac{z+y-z}{y z} \\
\frac{x+2 y}{x y}=\frac{y}{y z} \\
\frac{x+2 y}{x y}=\frac{1}{z}
\end{gathered}
$$

