First consider the special case when $M \sim R^{n}$. In this case, we have the canonical isomorphisms
$\left(\operatorname{Hom}_{R}(M, N)\right)^{K} \sim\left(\operatorname{Hom}_{R}\left(R^{n}, N\right)\right)^{K} \sim(n N)^{K} \sim n \cdot N^{K}$,
$\operatorname{Hom}_{R K}\left(M^{K}, N^{K}\right) \sim \operatorname{Hom}^{R K}\left(\left(R^{K}\right)^{n}, N^{K}\right) \sim n \cdot N^{K}$.
From this, we can safely conclude that θ is an isomorphism. (Some commutative diagrams must be checked, but it is mostly routine work.) Next we assume M is a finitely presented R-module, which means that there exists an exact sequence of R-modules $M 1 \rightarrow M 2 \rightarrow M \rightarrow 0$ where $M_{1}=R^{n}$ and $M_{2}=R^{m}$. Applying the left-exact Hom functors into N and into N^{K}, we have the following commutative diagram:
$0 \rightarrow\left(\operatorname{Hom}_{R}(M, N)\right)^{K} \rightarrow\left(\operatorname{Hom}_{R}\left(M_{2}, N\right)\right)^{K} \quad\left(\operatorname{Hom}_{R}\left(M_{1}, N\right)\right)^{K}$
$\downarrow \theta \quad \downarrow \theta_{2} \quad \downarrow \theta_{1}$
$0 \rightarrow \operatorname{Hom}_{R^{K}}\left(M^{K}, N^{K}\right) \rightarrow \operatorname{Hom}_{R^{K}}\left(M_{2}^{K}, N^{K}\right) \rightarrow \operatorname{Hom}_{R^{K}}\left(M_{1}^{K}, N^{K}\right)$

Since θ_{1}, θ_{2} are both isomorphisms, an easy diagram chase shows that θ is also an isomorphism.

