First consider the special case when $M \sim R^n$. In this case, we have the canonical isomorphisms $(\operatorname{Hom}_R(M,N))^K \sim (\operatorname{Hom}_R(R^n,N))^K \sim (nN)^K \sim n \cdot N^K$, $\operatorname{Hom}_{RK}(M^K,N^K) \sim \operatorname{Hom}^{RK}((R^K)^n,N^K) \sim n \cdot N^K$.

From this, we can safely conclude that θ is an isomorphism. (Some commutative diagrams must be checked, but it is mostly routine work.) Next we assume M is a finitely presented R-module, which means that there exists an exact sequence of R-modules $M1 \rightarrow M2 \rightarrow M \rightarrow 0$ where $M_1 = R^n$ and $M_2 = R^m$. Applying the left-exact Hom - functors into N and into N^K , we have the following commutative diagram:

Since θ_1 , θ_2 are both isomorphisms, an easy diagram chase shows that θ is also an isomorphism.