The "only if" part is clear. For the "if" part, assume every simple (left) R^L -module "comes from" a simple R^K -module. Let $M1, \ldots, Mn$ be all the distinct simple R^L -modules, and let $M_i = U_i^L$, where U_1, \ldots, U_n are (necessarily distinct) simple R^K -modules. If there is another simple R^K -module V not isomorphic to any U_i , then, a composition factor of V^L would give a simple R^L -module not isomorphic to any M_i , a contradiction. Thus, $\{U_1, \ldots, U_n\}$ give all the distinct simple R^K -modules. Each U_i remains irreducible over L and hence over the algebraic closure of L. Therefore, each U_i is absolutely irreducible, and we have proved that K is a splitting field for R.