For $a \in T(R)$, write $a=b+c$ where $b \in \operatorname{rad} R$ and $c \in[R, R]$. We have for every $m$ : $b^{p^{m}}=(a-c)^{p^{m}} \equiv$ $a^{p^{m}}-c^{p^{m}} \equiv a^{p^{m}}(\bmod [R, R])$. Choosing $m$ to be large enough, we have $b^{p^{m}}=0$ (since rad $R$ is nil). Therefore, the above congruence shows that $a^{p^{m}} \in[R, R]$. Now assume $k$ is a splitting field for $R$, and let $a \in R$ be such that $a^{p^{m}} \in[R, R]$ for some $m$. Let $R^{\prime}=R / \mathrm{rad} R \sim \prod_{i} A_{i}$ where $A i=\mathrm{M}_{n i}(k)$. Our job is to show that $a=a+\operatorname{rad} R$ belongs to $[R, R]$. Using the direct product decomposition above, we are reduced to showing that, for any $i$, the image $a_{i}^{\prime} \in A_{i}$ of $a^{\prime}$ belongs to $\left[A_{i}, A_{i}\right]$ (given that $a_{i}^{\prime} p^{m} \in\left[A_{i}, A_{i}\right]$ for some $m$ ). Therefore, we may as well assume that $R=\mathrm{M}_{n}(k)$. Here, let us compare $T^{\prime}(R):=\left\{a \in R: a^{p^{m}} \in[R, R]\right.$ for some $\left.m \geq 1\right\}$ with $T(R)=[R, R]$. Then $T^{\prime}(R)$ is a $k$-subspace of $R$ containing $T(R)$. But, $T(R)$ has codimension 1 in $R$. Since $a=\operatorname{diag}(1,0, \ldots, 0) \notin T^{\prime}(R)$ , we must have $T(R)=T^{\prime}(R)$.

