
Then, rad C = C ∩ rad R. Therefore, we have a k - embedding ϕ : C/rad C → R/rad R. Since R splits over k,  
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∏  for some s ≤ r. Assuming this claim, we will have  
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∏  so, C splits over k. To prove our claim, consider a k-subalgebra A ⊆ B. Since A is 

commutative, reduced, and artinian, A = K1 ×· · ·×Ks for suitable finite field extensions Ki/k. We finish by 

showing that Ki = k for all i. Let ei be the identity of Ki. For a suitable coordinate projection π of B = 
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∏  onto k, 

we have π(ei) ≠  0. Since π(ei) is an idempotent, we must have π(ei) = 1. Thus, π defines a k-algebra 
homomorphism from Ki to k, and it follows that π : Ki ∼ k, as desired. 
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