Then, $\operatorname{rad} C=C \cap \operatorname{rad} R$. Therefore, we have a $k$ - embedding $\varphi: C / \operatorname{rad} C \rightarrow R / \operatorname{rad} R$. Since $R$ splits over $k$, $R / \mathrm{rad} R \sim \prod_{i=1}^{r} M_{n_{i}}(k)$ for suitable $n_{1}, \ldots, n_{r}$. We have then $\varphi(C / \mathrm{rad} C) \subseteq Z(R / \mathrm{rad} R) \sim \prod_{i=1}^{r} k$. We claim that every k-subalgebra of $B:=\prod_{i=1}^{r} k$ is $k$-isomorphic to $\prod_{i=1}^{s} k$ for some $s \leq r$. Assuming this claim, we will have $C / \operatorname{rad} C \sim \varphi(C / \mathrm{rad} C) \sim \prod_{i=1}^{s} k$ so, $C$ splits over $k$. To prove our claim, consider a $k$-subalgebra $A \subseteq B$. Since $A$ is commutative, reduced, and artinian, $A=K 1 \times \cdots \times K s$ for suitable finite field extensions $K i / k$. We finish by showing that $K i=k$ for all $i$. Let $e i$ be the identity of $K i$. For a suitable coordinate projection $\pi$ of $B=\prod_{i=1}^{r} k$ onto $k$, we have $\pi(e i) \neq 0$. Since $\pi(e i)$ is an idempotent, we must have $\pi(e i)=1$. Thus, $\pi$ defines a $k$-algebra homomorphism from $K i$ to $k$, and it follows that $\pi: K i \sim k$, as desired.

