Without any assumptions on *k*, the nilpotency of $(\operatorname{rad} R)^{K}$ implies that $(\operatorname{rad} R)^{K} \subseteq \operatorname{rad}(R^{K})$. Now assume *R* splits over *k*. The quotient $_{R}(R/\operatorname{rad} R)$ is a semisimple *R*-module. Since every simple *R*-module remains a simple R^{K} -module upon scalar extension to *K*, $(R/\operatorname{rad} R)^{K}$ remains a semisimple R^{K} -module. Therefore, $\operatorname{rad}(R^{K})$ annihilates $(R/\operatorname{rad} R)^{K} = R^{K}/(\operatorname{rad} R)^{K}$, which amounts precisely to $\operatorname{rad}(R^{K}) \subseteq (\operatorname{rad} R)^{K}$.