

For any endomorphism $f: k^n \rightarrow k^n$, $\text{im}(f)$ is finitely generated. By the last exercise, $\text{im}(f)$ is a direct summand of kn , and hence a projective k -module. This implies that $\ker(f)$ is finitely generated, and hence also a direct summand of k^n . Then it follows that $M_n(k) \sim \text{End}_k(k^n)$ is von Neumann regular. Conversely, suppose $M_n(k)$ is von Neumann regular for all $n \geq 1$. To solve the last exercise, we may again restrict ourselves to the case where M is a finitely generated (right) k -submodule of $P = k^n$. By enlarging n if necessary, we may assume that M can be generated by n elements. Thus $M = \text{im}(f)$ for some $f \in \text{End}_k(k^n) \sim M_n(k)$. Since $M_n(k)$ is von Neumann regular, then M is a direct summand of k^n .