After enlarging the generating set, we may assume that $X:=\left\{x_{1}, \ldots, x_{n}\right\}$ is closed under conjugation. Every element of G is a product of the x_{i} 's. (We don't need their inverses since each x_{i} has finite order.) Fix a large number e such that $x_{e}{ }^{i}=1$ for all i. We finish by showing that every $a \in G$ is a product of no more than $n(e-1)$ elements from X. (This yields an explicit bound $|G| \leq n^{n(e-1)}$.) Suppose $a=a_{1} \cdots a_{m}$ where $a_{i} \in X$ and $m>n(e-$ 1). It suffices to show that we can "reexpress" a with fewer factors. Since $m>n(e-1)$, some $x \in X$ must appear at least e times in the above expression. Say a_{i} is the first factor equal to x. Let $a_{j}^{\prime}=x^{-1} a_{j} x \in X$ for $j<i$. Then $a=x a_{1}{ }_{1} \cdots a_{i-1}^{\prime} a_{i+1} \cdots a_{m}$.
Repeating this process, we can move e factors of x to the left, to get $a=x^{e} a_{1}^{*} \cdots a_{i-1}^{*} \cdots a_{m-e}^{*}$, where $a_{j}^{*} \in X$. Since $x^{e}=1$, we have now $a=a_{1}^{*} a_{2}^{*} \cdots a_{m-e}^{*}$, as desired.

