Stepwise Solution of 2 ${ }^{1 / 5}$ (Manually)

Newton's Method

Let $\mathrm{z}=$ final answer
$y=$ the nth root you want to find which here is $=5$
$x=$ base $=2$

1. Pick a level of approximation you are willing to live with, that is, a number ' e ' >0.
2. Let $\mathrm{z}(0)=$ our first guess of the answer.
3. Let $\mathrm{n}=0$.
4. Compute $z(n+1)=\left(1-\frac{1}{y}\right) z(n)+\left(\frac{x}{y *(z(n))^{y-1}}\right)$
5. If $|z(n+1)-z(n)|<e$, stop and declare that $z=z(n+1)$.
6. Replace n with $n+1$ and go to Step 3 .

This is called Newton's Method, after Sir Isaac Newton. It converges on the right answer very quickly, and more so if your guess $z(0)$ is a good one.

Solution of 21/5

Let our first guess of the answer, $\mathrm{z}(0)=1.2$. We want our answer to be correct up to 4 decimal places so:

$$
e=0.0001=10^{4}
$$

For $\mathbf{n}=0$

$$
z(1)=\left(1-\frac{1}{5}\right) 1.2+\left(\frac{2}{5 *(1.2)^{5-1}}\right)
$$

$\Rightarrow \mathrm{z}(1)=1.152901$

Now checking $|z(1)-z(0)|=|1.152901-1.2|=0.047>$ e. So answer has not come yet.
For $\mathrm{n}=1$

$$
z(2)=\left(1-\frac{1}{5}\right) 1.152901+\left(\frac{2}{5 *(1.152901)^{5-1}}\right)
$$

$\Rightarrow \mathrm{z}(2)=1.14873$
Now checking $|z(2)-z(1)|=|1.14873-1.152901|=0.00417>$ e. So answer has not come yet.
For $\mathrm{n}=2$

$$
z(3)=\left(1-\frac{1}{5}\right) 1.14873+\left(\frac{2}{5 *(1.14873)^{5-1}}\right)
$$

$\Rightarrow \mathrm{z}(3)=1.14869$

Now checking $|z(3)-z(2)|=|1.14869-1.14873|=0.0000316<e$. So stop now.
Answer is $=1.14869$

