

We may assume that $\text{char } k = p > 0$, for otherwise both sides of the equation are zero. Let \mathbb{F}_p denote the prime field of k . We shall first prove the following special case: $\text{rad}(kG) = (\text{rad } \mathbb{F}_p G) \otimes_{\mathbb{F}_p} k$.
 $(\mathbb{F}_p G / \text{rad } \mathbb{F}_p G) \otimes_{\mathbb{F}_p} k \sim kG / ((\text{rad } \mathbb{F}_p G) \otimes_{\mathbb{F}_p} k)$ is semisimple. Therefore, we must have $\text{rad } kG \subseteq (\text{rad } \mathbb{F}_p G) \otimes_{\mathbb{F}_p} k$. Since the latter is a nilpotent ideal in kG , equality holds. This proves special case, and we deduce immediately that $\text{rad}(KG) = (\text{rad } \mathbb{F}_p G) \otimes_{\mathbb{F}_p} K = (\text{rad } \mathbb{F}_p G) \otimes_{\mathbb{F}_p} k \otimes_k K = (\text{rad } kG) \otimes_k K$.