

Let $A = k_0G/\text{rad } k_0G$. In fact, A can be any finite-dimensional semisimple k_0 -algebra. By Wedderburn's Theorem, $A \sim \prod_i M_{n_i}(D_i)$, where the D_i 's are finite-dimensional k_0 -division algebras. By the other theorem of Wedderburn, each D_i is just a finite field extension of k_0 . Now

$$A \otimes_{k_0} K \cong \left(\prod_i M_{n_i}(D_i) \right) \otimes_{k_0} K \cong \prod_i (M_{n_i}(D_i) \otimes_{k_0} K) \cong \prod_i M_{n_i}(D_i \otimes_{k_0} K) A \otimes_{k_0} K$$

We are done if we can show that each $D_i \otimes_{k_0} K$ is a finite direct product of fields. To simplify the notation, write D for D_i . The crux of the matter is that D/k_0 is a (finite) *separable* extension. Say $D = k_0(\alpha)$, and let $f(x)$ be the minimal polynomial of α over k_0 . Then $f(x)$ is a *separable* polynomial over k_0 . Over $K[x]$, we have a factorization $f(x) = f_1(x) \cdots f_m(x)$ where the f_i 's are nonassociate irreducible polynomials in $K[x]$. By the Chinese Remainder Theorem:

$$D \otimes_{k_0} K \cong \frac{k_0[x]}{(f(x))} \otimes_{k_0} K \cong \frac{K[x]}{(f_1(x), \dots, f_m(x))} \cong \prod_j \frac{K[x]}{(f_j(x))}$$

This is a finite direct product of finite (separable) field extensions of K , as desired.