

Question 23292

First, let us rewrite the equation of the line $x(t)=1+3t; y(t)=-2-2t; z(t)=2+4t$ in symmetrical form: $\frac{x-1}{3}=\frac{y+2}{-2}=\frac{z-2}{4}$. So, vector $\vec{a}(3;-2;4)$ goes along this line. The equation of plane, which goes through point (x_0, y_0, z_0) , with normal vector to it $\vec{n}(A, B, C)$ is $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$. This plane must be perpendicular to \vec{a} , it means that $\vec{a} \parallel \vec{n}$, so in order to find \vec{n} , we need to make \vec{a} unit vector. The length of \vec{a} is $|\vec{a}|=\sqrt{9+4+16}=\sqrt{29}$. Hence, $\vec{n}\left(\frac{3}{\sqrt{29}}; -\frac{2}{\sqrt{29}}; \frac{4}{\sqrt{29}}\right)$, and equation of plane is $\frac{3}{\sqrt{29}}(x-2)-\frac{2}{\sqrt{29}}(y+1)+\frac{4}{\sqrt{29}}(z-3)=0$, or $3(x-2)-2(y+1)+4(z-3)=0$, or in canonical form $3x-2y+4z-20=0$.