

Question 1. *Prove that if $AB = BA$ for every N by N matrix A , then $B = cI$ for some constant c .*

Solution. It follows from $AB = BA$ that A should also be square of size N . For each $i = 1, \dots, N$ consider the diagonal matrix C_i , whose (i, i) -th entry is 1 and all the other entries are zero. Since $AC_i = C_iA$, then for all $j \neq i$

$$(AC_i)(i, j) = (C_iA)(i, j) \Leftrightarrow 0 = 1 \cdot A(i, j) \Leftrightarrow A(i, j) = 0.$$

Thus, we proved that A is diagonal. Now show that $A(i, i) = A(j, j)$ for all $1 \leq i, j \leq N$. Consider the matrix D_{ij} , whose unique nonzero entry is $D_{ij}(i, j) = 1$. Then $AD_{ij} = D_{ij}A$ implies

$$(AD_{ij})(i, j) = (D_{ij}A)(i, j) \Leftrightarrow A(i, i) \cdot D_{ij}(i, j) = D_{ij}(i, j) \cdot A(j, j) \Leftrightarrow A(i, i) = A(j, j).$$

So, A is diagonal and all the diagonal entries of A are equal, i. e. $A = cI$ for some constant c . \square