

Task

In an enhancement of a design of a CPU, the speed of a floating point unit has been increased by 20% and the speed of a fixed point unit has been increased by 10%. What is the overall speed up achieved if the ratio of the number of floating point operations to the number of fixed point operations is 2:3 and the floating point operation used to take twice the time taken by the fixed point operation in the original design?

- a) 1.155
- b) 1.185
- c) 1.255
- d) 1.285

Solution

Let the time taken by the fixed point operation in the original is t_{fix} , so time taken by the floating point operation $t_{fl} = 2t_{fix}$.

the ratio of the number of floating point operations to the number of fixed point operations is $N_{fl}:N_{fix} = 2:3$. And $N = 2 + 3 = 5$.

New speed of a floating point unit is $v *_{fl} = 1.2v_{fl}$.

The same for fixed point unit is $v *_{fix} = 1.1v_{fix}$.

Overall speed in the original design:

$$v_{ov} = \frac{\frac{N_{fl}}{t_{fl}} + \frac{N_{fix}}{t_{fix}}}{N}$$

Overall speed after an enhancement of a design:

$$v *_{ov} = \frac{\frac{N_{fl}}{t_{fl}} \cdot 1.2 + \frac{N_{fix}}{t_{fix}} \cdot 1.1}{N}$$

So overall speed up is $\frac{v_{ov}}{v *_{ov}}$:

$$\begin{aligned}
\frac{v *_{ov}}{v_{ov}} &= \frac{\frac{N_{fl}}{t_{fl}} \cdot 1.2 + \frac{N_{fix}}{t_{fix}} \cdot 1.1}{\frac{N_{fl}}{t_{fl}} + \frac{N_{fix}}{t_{fix}}} = \frac{\frac{N_{fl}}{t_{fl}} \cdot 1.2 + \frac{N_{fix}}{t_{fix}} \cdot 1.1}{\frac{N_{fl}}{t_{fl}} + \frac{N_{fix}}{t_{fix}}} = \frac{\frac{N_{fl}}{2t_{fix}} \cdot 1.2 + \frac{N_{fix}}{t_{fix}} \cdot 1.1}{\frac{N_{fl}}{2t_{fix}} + \frac{N_{fix}}{t_{fix}}} \\
&= \frac{\frac{2}{2t_{fix}} \cdot 1.2 + \frac{3}{t_{fix}} \cdot 1.1}{\frac{2}{2t_{fix}} + \frac{3}{t_{fix}}} = \frac{1.2 + 3.3}{1 + 3} = \frac{4.5}{4} = 1.125
\end{aligned}$$

Answer: 1.125