

Question 1. Let $\phi_i : G_i \rightarrow G_1 \times G_2 \times G_3 \times \cdots \times G_i \times \cdots \times G_r$ be given by $\phi_i(g_i) = (e_1, e_2, \dots, g_i, \dots, e_r)$ where $g_i \in G_i$ and e_j is the identity of G_j . Prove that this is an injective map.

Solution. Suppose $\phi_i(g_i) = \phi_i(h_i)$ for some $g_i, h_i \in G_i$. By definition of ϕ_i this means that

$$(e_1, e_2, \dots, g_i, \dots, e_r) = (e_1, e_2, \dots, h_i, \dots, e_r),$$

i. e.

$$\begin{aligned} e_1 &= e_1, \\ e_2 &= e_2, \\ &\dots \\ g_i &= h_i, \\ e_r &= e_r. \end{aligned}$$

In particular, $g_i = h_i$. Thus, $\phi_i(g_i) = \phi_i(h_i)$ implies $g_i = h_i$, and so ϕ_i is injective, $i = 1, \dots, r$. \square