

First note that, for $i \geq 1$, $1 + J^i$ is a normal subgroup of $U(R)$, as it is the kernel of the natural group homomorphism $U(R) \rightarrow U(R/J^i)$. We define a map $\sigma: J^i \rightarrow (1 + J^i)/(1 + J^{i+1})$ by $\sigma(x) = (1+x) \cdot (1 + J^{i+1})$, for every $x \in J^i$. This is a group homomorphism since, for $x, y \in J^i$: $\sigma(x)\sigma(y) = (1+x)(1+y) \cdot (1 + J^{i+1}) = (1+x+y+xy) \cdot (1 + J^{i+1}) = (1+x+y)[1 + (1+x+y)^{-1}xy] \cdot (1 + J^{i+1}) = \sigma(x+y)$. Since σ is surjective and has kernel J^{i+1} , it induces a group isomorphism $J^i/J^{i+1} \cong (1 + J^i)/(1 + J^{i+1})$.