

We construct here a *cyclic* artinian left module M of infinite length over some (noncommutative, non left-noetherian) ring R . In the triangular ring $R = \begin{pmatrix} \mathbb{Q} & 0 \\ \mathbb{Q} & \mathbb{Z} \end{pmatrix}$, the idempotent $e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ generates the left ideal $Re = \begin{pmatrix} \mathbb{Q} & 0 \\ \mathbb{Q} & 0 \end{pmatrix}$ (which is in fact an ideal). We express this module in the simpler form $\begin{pmatrix} \mathbb{Q} \\ \mathbb{Q} \end{pmatrix}$, and consider its submodule $\begin{pmatrix} 0 \\ \mathbb{Z}_{(p)} \end{pmatrix}$, where $\mathbb{Z}_{(p)}$ denotes the localization of \mathbb{Z} at a prime ideal (p) .

Since $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} 0 & 0 \\ x & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ cx & 0 \end{pmatrix}$ ($a, b \in \mathbb{Q}; c \in \mathbb{Z}$), the ideal Re acts trivially on $\begin{pmatrix} 0 \\ \mathbb{Q} \end{pmatrix}$ so the R -submodules of $\begin{pmatrix} 0 \\ \mathbb{Q} \end{pmatrix}$ are just $\begin{pmatrix} 0 \\ G \end{pmatrix}$ where G is any subgroup of \mathbb{Q} . Now $\mathbb{Q}/\mathbb{Z}_{(p)}$ is isomorphic to the Prüfer p -group (the group of p^n -th roots of unity for $n \in \mathbb{N}$), which is of infinite length as a \mathbb{Z} -module. Therefore, the cyclic R -module $M := \begin{pmatrix} \mathbb{Q} \\ \mathbb{Q} \end{pmatrix} / \begin{pmatrix} 0 \\ \mathbb{Z}_{(p)} \end{pmatrix} \supseteq M' = \begin{pmatrix} 0 \\ \mathbb{Q} \end{pmatrix} / \begin{pmatrix} 0 \\ \mathbb{Z}_{(p)} \end{pmatrix}$ is also of infinite length. Now $M/M' \sim \begin{pmatrix} \mathbb{Q} \\ \mathbb{Q} \end{pmatrix} / \begin{pmatrix} 0 \\ \mathbb{Q} \end{pmatrix}$ is a *simple* R -module, and M' is an *artinian* \mathbb{Z} -module (and hence an artinian R -module). It follows that M is also an artinian R -module (of infinite length), as desired.