

Clearly, $\text{rad } R$ is the ideal generated by the x_i 's. We have $(\text{rad } R)^2 = 0$, and $R/\text{rad } R \cong \mathbb{Q}$, so R is semiprimary. The strictly ascending chain $(x_1) \subseteq (x_1, x_2) \subseteq (x_1, x_2, x_3) \subseteq \dots$ shows that R is not noetherian, while the strictly descending chain $(x_1, x_2, \dots) \supseteq (x_2, x_3, \dots) \supseteq (x_3, x_4, \dots) \supseteq \dots$ shows that R is not artinian.