We can transform this equation using the next trigonometric identities:
$\sec x=\frac{1}{\cos x}$ and $\cos \left(90^{\circ}-x\right)=\sin x$
We have:
$\frac{1}{\cos (2 x)}=3 \cos (2 x)+\sin (2 x)$
Since $\sin x=\sqrt{1-\cos ^{2} x}$ then:
$\frac{1}{\cos (2 x)}=3 \cos (2 x)+\sqrt{1-\cos ^{2}(2 x)}$
After the substitution $\cos (2 x)=t$ we get the equation:
$\frac{1}{t}=3 t+\sqrt{1-t^{2}}$
The roots of this equation are: $-\frac{\sqrt{2}}{2}$ and $\frac{\sqrt{5}}{5}$
We have two equations for $\cos (2 x)$:
$\cos (2 x)=-\frac{\sqrt{2}}{2}$
$\cos (2 x)=\frac{\sqrt{5}}{5}$
First equation gives $x= \pm \frac{1}{2} \arccos \left(-\frac{\sqrt{2}}{2}\right)= \pm 67.5^{\circ}$
From second equation $x= \pm \frac{1}{2} \arccos \left(-\frac{\sqrt{5}}{5}\right) \approx \pm 31.7^{\circ}$
Answer : $x=\left\{-67.5^{\circ},-31.7^{\circ}, 31.7^{\circ}, 67.5^{\circ}\right\}$

