solve the following equation in the given interval :
$\sec 2 x=3 \cos 2 x+\cos (90-2 x) ;-90<x<90$

Collecting everything on the left
$\sec 2 x-3 \cos 2 x-\cos (90-x)=0$
Using the definitions of the trigonometric functions

$$
\sec 2 x=\frac{1}{\cos 2 x}
$$

Using the complementary identities
$\cos (90-2 x)=\sin 2 x$
$\frac{1}{\cos 2 x}-3 \cos 2 x-\sin 2 x=0$
Dividing by $\cos 2 x$
$\frac{1}{\cos ^{2} 2 x}-3-\frac{\sin 2 x}{\cos 2 x}=0$
Using the Pythagorean identities
$\sin ^{2} 2 x+\cos ^{2} 2 x=1$
$\frac{\sin ^{2} 2 x+\cos ^{2} 2 x}{\cos ^{2} 2 x}-\frac{\sin 2 x}{\cos 2 x}-3=0$
Using the definitions of the trigonometric functions
$\tan 2 x=\frac{\sin 2 x}{\cos 2 x}$
$\tan ^{2} 2 x+1-\tan 2 x-3=0$
$\tan ^{2} 2 x-\tan 2 x-2=0$
This is quadratic equation for $\tan 2 x$
Solving
$\tan 2 x=\frac{1 \pm \sqrt{1^{2}-4 \times 1 \times(-2)}}{2 \times 1}=\frac{1 \pm 3}{2}$, so
$\tan 2 x=2$ and $\tan 2 x=-1$, where $-180^{\circ}<2 x<180^{\circ}$, then
$2 x=63.43^{0}, 2 x=-116.57^{0}, 2 x=-45^{0}$ so
Answer: $x=31.72^{0}, x=-58.28^{0}, x=-22.5^{0}$

