

Conditions

prove Principle of Mathematical Induction using Peano axioms

Solution

The Peano axioms define the arithmetical properties of natural numbers, usually represented as a set N or \mathbb{N} . The signature (a formal language's non-logical symbols) for the axioms includes a constant symbol 0 and a unary function symbol S .

The constant 0 is assumed to be a natural number:

0 is a natural number.

The next four axioms describe the equality relation.

For every natural number x , $x = x$. That is, equality is reflexive.

For all natural numbers x and y , if $x = y$, then $y = x$. That is, equality is symmetric.

For all natural numbers x , y and z , if $x = y$ and $y = z$, then $x = z$. That is, equality is transitive.

For all a and b , if a is a natural number and $a = b$, then b is also a natural number. That is, the natural numbers are closed under equality.

The remaining axioms define the arithmetical properties of the natural numbers. The naturals are assumed to be closed under a single-valued "successor" function S .

For every natural number n , $S(n)$ is a natural number.

Peano's original formulation of the axioms used 1 instead of 0 as the "first" natural number. This choice is arbitrary, as axiom 1 does not endow the constant 0 with any additional properties. However, because 0 is the additive identity in arithmetic, most modern formulations of the Peano axioms start from 0 . Axioms 1 and 6 define a unary representation of the natural numbers: the number 1 can be defined as $S(0)$, 2 as $S(S(0))$ (which is also $S(1)$), and, in general, any natural number n as $S^n(0)$. The next two axioms define the properties of this representation.

For every natural number n , $S(n) = 0$ is false. That is, there is no natural number whose successor is 0 .

For all natural numbers m and n , if $S(m) = S(n)$, then $m = n$. That is, S is an injection.

Axioms 1, 6, 7 and 8 imply that the set of natural numbers contains the distinct elements 0 , $S(0)$, $S(S(0))$, and furthermore that $\{0, S(0), S(S(0)), \dots\} \subseteq N$. This shows that the set of natural numbers is infinite. However, to show that $N = \{0, S(0), S(S(0)), \dots\}$, it must be shown that $N \subseteq \{0, S(0), S(S(0)), \dots\}$; i.e., it must be shown that every natural number is included in $\{0, S(0), S(S(0)), \dots\}$. To do this however requires an additional axiom, which is sometimes called the

axiom of induction. This axiom provides a method for reasoning about the set of all natural numbers.

If K is a set such that:

0 is in K , and

for every natural number n , if n is in K , then $S(n)$ is in K ,

then K contains every natural number.

The induction axiom is sometimes stated in the following form:

If ϕ is a unary predicate such that:

$\phi(0)$ is true, and

for every natural number n , if $\phi(n)$ is true, then $\phi(S(n))$ is true,

then $\phi(n)$ is true for every natural number n .

Now let's prove the principle of mathematical induction, using these axioms.

For instance, it can be proved if one assumes:

The set of natural numbers is well-ordered.

Every natural number is either zero, or $n+1$ for some natural number n .

For any natural number n , $n+1$ is greater than n .

To derive simple induction from these axioms, we must show that if $P(n)$ is some proposition predicated of n , and if:

$P(0)$ holds and

whenever $P(k)$ is true then $P(k+1)$ is also true

then $P(n)$ holds for all n .

Proof. Let S be the set of all natural numbers for which $P(n)$ is false. Let us see what happens if we assert that S is nonempty. Well-ordering tells us that S has a least element, say t . Moreover, since $P(0)$ is true, t is not 0 . Since every natural number is either zero or some $n+1$, there is some natural number n such that $n+1=t$. Now n is less than t , and t is the least element of S . It follows that n is not in S , and so $P(n)$ is true. This means that $P(n+1)$ is true, and so $P(t)$ is true. This is a contradiction, since t was in S . Therefore, S is empty.

It can also be proved that induction, given the other axioms, implies well-ordering.