AN ALTITUDE OF A TRIANGLE IS 5/3 THE LENGTH OF ITS CORRESPONDING BASE. IF
THE ALTITUDE IS INCREASED BY 4CM AND THE BASE DECREASED BY 2CM, THE AREA OF THE
TRIANGLE REMAIN THE SAME . FIND THE BASE AND THE ALTITUDE OF THE TRIANGLE.

Solution:

Let an altitude will be h and it's corresponding base will be a. According to condition $h=(5 / 3) a$, and the area of triangle will be $S=(1 / 2)^{*}(5 / 3) a * a$. If the altitude is increased by 4 cm and the base decreased by 2 cm , the area will be $\mathrm{S}=(1 / 2)^{*}((5 / 3) a+4)^{*}(a-2)$

According to condition, the area of triangle remain the same, so let's make the equation
$(1 / 2)^{*}(5 / 3) a * a=(1 / 2)^{*}((5 / 3) a+4)^{*}(a-2)$
$(5 / 3) a^{*} a=((5 / 3) a+4) *(a-2)$

$$
12 a^{2}=34
$$

$$
a^{2}=\frac{17}{6}=>a=\sqrt{17 / 6}=>h=5 / 3 \sqrt{17 / 6}
$$

Answer: $a=\sqrt{17 / 6}, h=5 / 3 \sqrt{17 / 6}$

