Question 1. If R is a ring with identity, then prove that $\langle a \rangle = \{\sum_{i=1}^{n} s_i a t_i \mid n \in \mathbb{N}, s_i, t_i \in R\} = RaR.$

Solution. First of all show that RaR is an ideal of R. Taking any $\sum_{i=1}^{n} s_i at_i \in RaR$ and multiplying it on the left or on the right by $r \in R$ we get

$$\sum_{i=1}^{n} rs_i at_i \in RaR, \quad \sum_{i=1}^{n} s_i at_i r \in RaR.$$

Now for arbitrary $\sum_{i=1}^{n} s_i a t_i \in RaR$ and $\sum_{j=1}^{m} u_j a v_j \in RaR$ their difference is

$$\sum_{k=1}^{m+n} x_k a y_k \in RaR,$$

where

$$x_{k} = \begin{cases} s_{k}, & 1 \le k \le n, \\ -u_{k-n}, & n+1 \le k \le m+n \end{cases}, \quad y_{k} = \begin{cases} t_{k}, & 1 \le k \le n, \\ -v_{k-n}, & n+1 \le k \le m+n \end{cases}$$

Hence RaR is a subgroup of additive group of R. So, $\langle a \rangle \subset RaR$. The converse inclusion: since $a \in \langle a \rangle$ and $\langle a \rangle$ is a (two-sided) ideal, then for all $s_i, t_i \in R, i = 1, \ldots, n$, we have $s_i a t_i \in R$. Therefore, $\sum_{i=1}^n s_i a t_i \in \langle a \rangle$, because an ideal is closed under addition. Thus, $RaR \subset \langle a \rangle$.