Question 1. Evaluate $\int_{C} f(z) d z, f(z)=\frac{z^{2}}{z+3}, C=\{|z|=1\}$.
Solution. The function $f(z)$ has the only one singular point in \mathbb{C} : $z_{0}=-3$. Since $\left|z_{0}\right|=|-3|=3>1$, we conclude that this point does not belong to the domain $D_{\varepsilon}=\{|z|<1+\varepsilon\}$ for some small $\varepsilon>0$. Hence, f is holomorphic in D_{ε}. Since $C \subset D_{\varepsilon}$, by Cauchy theorem the integral of f along C is zero. Thus, $\int_{C} f(z) d z=0$.
Answer: $\int_{C} f(z) d z=0$.

