Question 1. Use induction to prove that $f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{C} \frac{f(s) d s}{(s-z)^{n+1}}, n=$ $1,2,3, \ldots$

Solution. For the base of induction consider the case $n=0$. Then the formula has the form

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s) d s}{s-z}
$$

It is simply the Cauchy's integral formula for $f(z)$. The inductive step: suppose the formula is true for some nonnegative integer n. Prove that it is true for $n+1$. Differentiate under the sign of integral with respect to z :

$$
\begin{aligned}
f^{(n+1)}(z) & =\left(f^{(n)}(z)\right)^{\prime} \\
& =\left(\frac{n!}{2 \pi i} \int_{C} \frac{f(s) d s}{(s-z)^{n+1}}\right)^{\prime} \\
& =\frac{n!}{2 \pi i} \int_{C} f(s) d s\left(\frac{-(n+1) \cdot(-1)}{(s-z)^{n+2}}\right) \\
& =\frac{(n+1)!}{2 \pi i} \int_{C} \frac{f(s) d s}{(s-z)^{n+2}}
\end{aligned}
$$

as desired.

