Show that the following equation has a solution of the form $u(x, y)=e^{(a x+b y)}$ and find the constants a and b :

$$
u_{x x}+u_{y y}=5 e^{(x-2 y)}
$$

Solution:

$$
\begin{gathered}
u_{x}=\frac{\partial u}{\partial x}=a e^{(a x+b y)} \\
u_{x x}=\frac{\partial^{2} u}{\partial x^{2}}=a^{2} e^{(a x+b y)} \\
u_{y}=\frac{\partial u}{\partial y}=b e^{(a x+b y)} \\
u_{y y}=\frac{\partial^{2} u}{\partial y^{2}}=b^{2} e^{(a x+b y)} \\
u_{x x}+u_{y y}=a^{2} e^{(a x+b y)}+b^{2} e^{(a x+b y)}=\left(a^{2}+b^{2}\right) e^{(a x+b y)} \\
\left(a^{2}+b^{2}\right) e^{(a x+b y)}=5 e^{(x-2 y)} \rightarrow a=1, b=-2
\end{gathered}
$$

Answer: $a=1, b=-2$.

