Conditions

One of the following is false
(A) $A \cup B=x: x \in A o r x \in B$
(B) $A \backslash(B \cup C)=(A \backslash B) n(A \backslash C)$
(C) $A \backslash(B \cup C)=(A \backslash B) \cup(A \backslash C)$
(D) $A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$

Please explain

Solution

The false statement is C .
Explanation:
Consider point b from set A and B but not from C :
$b \in A \cap B, b \cap C=\emptyset$

Consider set $A \backslash(B \cup C) . b$ is not from this set, as $b \in A \cap B_{s} \rightarrow, b \in B$:
$b \cap A \backslash(B \cup C)=\emptyset$
Consider set $(A \backslash B) \cup(A \backslash C)$. The first set doesn't have point b in it, as b is from B , but the second set has this point in, because b is from A, but b isn't from C, so if we exclude all C points from A, there will remain our point b. As we have $a \cup$ between, it means, that there is point b in $(A \backslash B) \cup(A \backslash C)$

So, on the left side of this set equation we have a set, which doesn't include point b and on the right side - a set which includes this point. Here is a false.

