Conditions

The complement of set B relative to set A is the set
(A) $A \backslash B=x: x \in A o r x \notin B$
(B) $A \backslash B=x: x \in A$ and $x \notin B$
(C) $A / B=x: x \in$ Aor $x \notin B$
(D) $A / B=x: x \in$ Aand $x \notin B$

Please explain

Solution

If A and B are sets, then the relative complement of A in B, also termed the set-theoretic difference of B and A, is the set of elements in B, but not in A.

The relative complement of A in B is denoted $B \backslash A$ according to the ISO 31-11 standard (sometimes written $B-A$, but this notation is ambiguous, as in some contexts it can be interpreted as the set of $a l l b-a$, where b is taken from B and a from A).

Formally
$B \backslash A=\{x \in B \mid x \notin A\}$.
For our case B and A places are changed:
(B) $A \backslash B=x: x \in A$ and $x \notin B$

Answer: $(B) A \backslash B=x: x \in A a n d x \notin B$

