Question $\# \mathbf{2 2 4 3 5}$ Let U and V be vector spaces over a field F. Let $T: U \rightarrow V$ is one-one if and only if ...
(A) $\operatorname{rank}(T)=0$
(B) $\operatorname{rank}(T)=1$
(C) $\operatorname{ker}(T)=0$
(D) $\operatorname{ker}(T)=1$

Please explain
Solution. Let us prove that the wright answer is C. Really, assume that $\operatorname{ker} T=0$, then if one has $T\left(u_{1}\right)=T\left(u_{2}\right)$, when $u_{1} \neq u_{2}$, then $T\left(u_{1}-u_{2}\right)=0$, since T is linear, so $u_{1}-u_{2} \in \operatorname{ker} T$, which contradicts the assumption that $\operatorname{ker} T=0$. Now assume that T is $1-1$ mapping. Since T is linear that $T(0)=0$, and since T is 1-1, then $T(u)=0, u \neq 0$, thus ker $T=0$. Hence
Answer C.

