Question #22435 Let U and V be vector spaces over a field F. Let $T: U \to V$ is one-one if and only if ...

- (A) $\operatorname{rank}(T) = 0$ (B) $\operatorname{rank}(T) = 1$ (C) $\ker(T) = 0$
- (D) $\ker(T) = 1$
- Please explain

Solution. Let us prove that the wright answer is C. Really, assume that ker T = 0, then if one has $T(u_1) = T(u_2)$, when $u_1 \neq u_2$, then $T(u_1 - u_2) = 0$, since T is linear, so $u_1 - u_2 \in \ker T$, which contradicts the assumption that ker T = 0. Now assume that T is 1-1 mapping. Since T is linear that T(0) = 0, and since T is 1-1, then $T(u) = 0, u \neq 0$, thus ker T = 0. Hence **Answer** C.