Question #22434 Let U and V be vector spaces over a field F and dim U = n. Let $T: U \to V$ be a linear operator, then $\operatorname{rank}(T) + \dim \ker(T) = \dots$ (A)0

(B) 1

(C) n - 1

(D) n

Please explain

Solution.By definition! nulity of T is dim ker T. Every book on linear algebra contains the following fact: if $T: U \to V$ os linear transformation between finite dimensional llinear spaces, then rank $(T) + \dim \ker(T) = \dim U$. Hence: **Answer** D.

1