Question $\# \mathbf{2 2 4 3 4}$ Let U and V be vector spaces over a field F and $\operatorname{dim} U=n$. Let $T: U \rightarrow V$ be a linear operator, then $\operatorname{rank}(T)+\operatorname{dim} \operatorname{ker}(T)=\ldots$
(A) 0
(B) 1
(C) $n-1$
(D) n

Please explain
Solution.By definition! nulity of T is $\operatorname{dim} \operatorname{ker} T$. Every book on linear algebra contains the following fact: if $T: U \rightarrow V$ os linear transformation between finite dimensional llinear spaces, then $\operatorname{rank}(T)+\operatorname{dim} \operatorname{ker}(T)=\operatorname{dim} U$. Hence:
Answer D.

