Question \#22433 Let U and V be vector spaces over a field F, a function $T: U \rightarrow F$, such that $T\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}\right)=\alpha_{1} T\left(u_{1}\right)+\alpha_{2} T\left(u_{2}\right)$, for $\alpha_{1}, \alpha_{2} \in F$ and $u_{1}, u_{2} \in U$
is a called a ... if (A) Vector space
(B) Transformation
(C) Linear transformation
(D) Nullity

Please explain
Solution. By definition the property of function T : $T\left(\alpha_{1} u_{1}+\alpha_{2} u_{2}\right)=\alpha_{1} T\left(u_{1}\right)+$ $\alpha_{2} T\left(u_{2}\right)$, for $\alpha_{1}, \alpha_{2} \in F$ and $u_{1}, u_{2} \in U$ is linearity property. Vector space is not a function, as well as nullity, which is dimension of kernel of T. Transformation is synonym to "function", however this does not describe the property in question Hence
Answer C.

