

Question 1. Use the alternating series test to determine convergence or divergence of the series $\sum_{i=1}^{\infty} (-1)^{i+1} \frac{i+3}{i^2+10}$.

Solution. The series has the form $\sum_{i=1}^{\infty} (-1)^{i+1} a_i$, where $a_i = \frac{i+3}{i^2+10}$. If we show that the sequence a_i is asymptotically decreasing and tends to 0 as $i \rightarrow \infty$, then by Leibnitz rule the series $\sum_{i=1}^{\infty} (-1)^{i+1} a_i$ is convergent. Indeed,

$$\begin{aligned} \frac{i+3}{i^2+10} &= \frac{i+3}{i^2+6i+9-6i-18+19} \\ &= \frac{i+3}{(i+3)^2-6(i+3)+19} \\ &= \frac{1}{i+3+\frac{19}{i+3}-6} \\ &= \frac{1}{b_i-6}, \end{aligned}$$

where $b_i = i+3+\frac{19}{i+3}$. It is sufficient to prove that b_i is asymptotically increasing and tends to ∞ as $i \rightarrow \infty$. We have

$$\begin{aligned} b_{i+1} - b_i &= \left(i+4+\frac{19}{i+4} \right) - \left(i+3+\frac{19}{i+3} \right) \\ &= 1 + 19 \left(\frac{1}{i+4} - \frac{1}{i+3} \right) \\ &= 1 - \frac{19}{(i+3)(i+4)}. \end{aligned}$$

Since $\frac{19}{(i+3)(i+4)} \rightarrow 0$ as $i \rightarrow \infty$, then starting from some $I \in \mathbb{N}$ we have $1 - \frac{19}{(i+3)(i+4)} > 0$ and so $b_{i+1} > b_i$ for $i > I$. This shows that b_i increases, when $i > I$. The fact that it tends to ∞ easily follows from the observation that $i+3 \rightarrow \infty$ and $\frac{19}{(i+3)(i+4)} \rightarrow 0$ as $i \rightarrow \infty$.

Answer: it is convergent by Leibnitz rule. \square