Conditions

Verify Green's Theorem in the plane for integral_c [($\left.\left.x^{\wedge} 2-x y^{\wedge} 3\right) d x+\left(y^{\wedge} 2-2 x y\right) d y\right]$ where C is a square with vertices at $(0,0),(2,0),(2,2),(0,2)$.

Solution

As we know, the Green's Theorem claims:
Let C be a positively oriented, piecewise smooth, simple closed curve in a plane, and let D be the region bounded by C. If L and M are functions of (x, y) defined on an open region containing D and have continuous partial derivatives there, then:
$\oint_{C}(L \mathrm{~d} x+M \mathrm{~d} y)=\iint_{D}\left(\frac{\partial M}{\partial x}-\frac{\partial L}{\partial y}\right) \mathrm{d} x \mathrm{~d} y$.
Let's check the conditions of this theorem to check whether it works for our case.
As the C is a square with vertices at $(0,0),(2,0),(2,2),(0,2)$, then this is positively oriented, piecewise smooth (because each side of this square could be represented as a linear function on a plane), simple closed curve. So, the conditions for C is completed.

Let's check the partial derivatives for functions:
$L(x, y)=x^{2}-x y^{3}$
$M(x, y)=y^{2}-2 x y$
As these functions are polynomials, then each their derivative is a continuous function. And these functions are defined in all R^{2}, so they are defined on each open region containing D .

That's why the Green's Theorem is verified for our example.

