Conditions

if the papers of 4 students can be checked by any of the 7 teachers, the show that the probability that all the 4 papers are checked by exactly 2 teachers is 6/49

Solution

The probability of this event is the rate for all favorable outcomes (the amount of ways in which we can take fixed 2 teachers from 7) to all possible outcomes (the amount of ways in which we can take any of 7 teachers four times).

For $1^{\text {st }}$ paper we can take a teacher in 7 different ways.
For $2^{\text {nd }}$ - in 6 ways (excluding the $1^{\text {st }}$ chosen teacher)
For $3^{\text {rd }}$ - in 2 ways (first or second teacher)
For $4^{\text {th }}$ - in 2 ways (first or second teacher)
That's why the probability is:
$P=\frac{7 \times 7 \times 2 \times 2}{7 \times 7 \times 7 \times 7}=\frac{4}{49}$
Answer: 4/49, not 6/49

