Triangle $A B C$ is inscribed in circle with centre O. seg $A D$ is a diameter. tangent to the circle at point D intersects seg $A B$ in X and $A C$ in Y. To prove: $A B \times A X=A C \times A Y$.

Answer:

Let $\angle \mathrm{CDY}$ be x°, then :

1) $\angle D A C=x^{\circ}$;

Similary, $\angle C B D=x^{\circ}$.
$\angle A B D=90^{\circ}$
(ii) Angle in the semicirele.
2) $\angle A B C=(90-x)^{\circ}$, From (i) and (ii). Also, in $\triangle D C Y, \quad \triangle D C Y=90^{\circ}, \quad \triangle A C D=90^{\circ}$ And $\angle D C Y=x^{\circ}$.
3) $\angle C Y D=(90-x)^{\circ}$. Angle sum property;
4) $\triangle A B C$ and $\triangle A Y X: \angle A B C=\angle A Y X=(90-\boldsymbol{x})^{\circ}$.

Also $\angle A=\angle A$.
5) $\triangle A B C \sim \triangle A Y X$ (AA criterion), then $\frac{A B}{A Y}=\frac{A C}{A X} \rightarrow A B \times A X=A C \times A Y$. Hence proved.

