Triangle ABC is inscribed in circle with centre O. seg AD is a diameter. tangent to the circle at point D intersects seg AB in X and AC in Y. To prove: $AB \times AX = AC \times AY$.

Answer:

Let $\angle CDY$ be x° , then :

- 1) $\angle DAC = x^{\circ}$; Similary, $\angle CBD = x^{\circ}$. (i) $\angle ABD = 90^{\circ}$ (ii) Angle in the semicirele.
- 2) $\angle ABC = (90 x)^{\circ}$, From (i) and (ii) . Also, in $\triangle DCY$, $\triangle DCY = 90^{\circ}$, $\triangle ACD = 90^{\circ}$ And $\triangle DCY = x^{\circ}$.
- 3) $\angle CYD = (90 x)^{\circ}$. Angle sum property;
- 4) $\triangle ABC$ and $\triangle AYX : \angle ABC = \angle AYX = (\mathbf{90} x)^{\circ}$. Also $\angle A = \angle A$.
- 5) $\triangle ABC \sim \triangle AYX$ (AA criterion), then $\frac{AB}{AY} = \frac{AC}{AX} \rightarrow AB \times AX = AC \times AY$. Hence proved.