Conditions

prove that integral of $\sin ^{\wedge} 2 w d w / w^{\wedge} 2$ having limits 0 to infinite $=\mathrm{pi} / 2$??

Solution

Consider the integral:
$\int_{0}^{\infty} \frac{\sin ^{2} w d w}{w^{2}}$
As we know, this integral cannot be represented by using elementary functions, that's why in math appeared the definition of Sine integral:
$\mathrm{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t$
One of the properties of this integral is:
$\lim _{x \rightarrow+\infty} \operatorname{Si} x=\frac{\pi}{2}$,
It's known, that
$\int \frac{\sin ^{2} w d w}{w^{2}}=\operatorname{Si}(2 w)-\frac{\sin ^{2} w}{w}+c$

$$
\int_{0}^{\infty} \frac{\sin ^{2} w d w}{w^{2}}=\lim _{x \rightarrow \infty} \int_{0}^{x} \frac{\sin ^{2} w d w}{w^{2}}=\lim _{x \rightarrow \infty} \operatorname{Si}(2 x)-0-0+0=\frac{\pi}{2}
$$

