1. True or false:

- If f is a linear function, then f has an inverse? FALSE
- Is it $f(x)=3$ is a linear function? TRUE

2. Let $f(x)=$ definite integral of the square root $\left(1+t^{\wedge} 3\right) d t$ with lower and upper limit are 3 and x respectively.
(a) argue that f has an inverse function
(b) find $\mathrm{f}^{\wedge}-1(0)$

Solution:

(a) Since $f(x)=\int_{3}^{x} \sqrt{1+t^{3}} d t$ is an area, one x will produce only one area $\mathrm{f}(\mathrm{x})$. Since $x>0$, one area has only one corresponding x. Thus, $f(x)$ has an inverse function.
(b) 1. Find $f(3)$:

$$
f(3)=\int_{3}^{3} \sqrt{1+t^{3}} d t=F(3)-F(3)=0
$$

2. Find $f^{\prime}(x)$ and $f^{\prime}(3)$:

$$
\begin{gathered}
f^{\prime}(x)=\sqrt{1+x^{3}} \cdot 1=\sqrt{1+x^{3}} \\
f^{\prime}(3)=\sqrt{1+3^{3}}=\sqrt{28}
\end{gathered}
$$

3. Let the inverse of $f(x)$ will be $g(x)$, then

$$
f(g(x))=x
$$

Take derivatives on both sides.

$$
\begin{equation*}
f^{\prime}(g(x)) \cdot g^{\prime}(x)=1 \tag{1}
\end{equation*}
$$

Set $x=0$

$$
f^{\prime}(g(0)) \cdot g^{\prime}(0)=1
$$

Also,

$$
g(f(x))=x
$$

Thus,

$$
g(f(3))=3
$$

That is,

$$
g(0)=3
$$

Take it back to (1)

$$
\begin{gathered}
f^{\prime}(3) \cdot g^{\prime}(0)=1 \\
\sqrt{28} \cdot g^{\prime}(0)=1 \\
g^{\prime}(0)=\frac{1}{\sqrt{28}}
\end{gathered}
$$

That is $f^{-1}(0)=\frac{1}{\sqrt{28}}$

