Solve, write your answer in interval notation and graph the solution set.
2b. $7+|3 y-2|$ less than or equal to 10
2c. $|6 x+5|$ greater than or equal to -5

Solution

Inequalities involving absolute values can be rewritten as combinations of inequalities. Let y be a positive number, then $7+3 y-2 \leq 10$
$7+3 y-2 \leq 10$
$3 y \leq 10-5$
$3 y \leq 5$
$y \leq \frac{5}{3}$
Let y be a positive number, then $7-3 y+2 \leq 10$
$-3 y+9 \leq 10$
$-3 y \leq 1$
When we divided both sides of the inequality by -3 we changed the direction of the inequality.
$y \geq-\frac{1}{3}$

$-\frac{1}{3} \leq y \leq \frac{5}{3}$
The absolute value of a number is the distance the number is from 0 on the number line. So the inequality $|3 y-2|<10$ is satisfied by numbers whose distance from 0 is less than or equal to 10 . This is the set of numbers between -10 and 10. In terms of graphs, we are looking for y values such that the corresponding point on the graph of $7+|3 y-2|$ is either below or equal to the point on the graph of 10 .

Interval notation for closed interval $y \in\left[-\frac{1}{3}, \frac{5}{3}\right]$

2c. $|6 x+5|$ greater than or equal to -5
$|6 x+5| \geq-5$
Let x be a positive number, then $6 x+5 \geq-5$.
$6 x \geq 0$
$x \geq 0$
$x \in R$

