Solve, write your answer in interval notation and graph the solution set.
1a. $2-5 x$ less than 12
1b. $2(x+5)-1$ less than or equal to $x+5$

Solution

A solution for an inequality in x is a number such that when we substitute that number for x we have a true statement. Interval notation is a way to notate the range of values that would make an inequality true. Solve the first inequality $2-5 x$ less than 12 , written in the form of mathematical inequality $2-5 x<12$
$-5 x<12-2$
$-5 x<10$
$x>-2$
An open interval does not include where your variable is equal to the endpoint. Interval notation for open Intervals $x \in(-2,+\infty)$.

To satisfy the inequality $2-5 x$ needs to be less than 12 . So we are looking for numbers x such that the point on the graph of $y=2-5 x$ is below the point on the graph of $\mathrm{y}=12$. This is true for $x>-2$. In interval notation the solution set is $x \in(-2,+\infty)$.

Graphs of the functions on either side of the inequality.

1b. $2(x+5)-1$ less than or equal to $x+5$
Find all numbers x such that $2(x+5)-1 \leq x+5$. In this case we get a closed interval includes where your variable is equal to the endpoint.
$2(x+5)-1 \leq x+5$
$2 x+10-1 \leq x+5$
$2 x-x \leq 5-9$
$x \leq-4$

Interval notation for closed interval $x \in(-\infty,-4]$.
To satisfy the inequality $2 x+9$ needs to be less than or equal to $x+5$. So we are looking for numbers x such that the point on the graph of $y=2 x+9$ is below the point on the graph of $y=x+5$. This is true for $x \leq-4$. In interval notation the solution set is $x \in(-\infty,-4]$.

