two circles with radii a and b respectively touch each other externally and a smaller circle with radius c touch both the circles and also the common tangent to the two circles, then prove that:
$\left\{(1 / a)^{\wedge} 0.5\right\}+\left\{(1 / b)^{\wedge} 0.5\right\}=\left\{(1 / c)^{\wedge} 0.5\right\}$

Solution

Circles are touch each other externally, thus:

$$
\begin{aligned}
& A B=a+b \\
& A C=a+c \\
& B C=c+b
\end{aligned}
$$

From right triangle $\triangle C D B$, where $\angle D=90^{\circ}$, using Pythagorean theorem:

$$
C D=\sqrt{(B C)^{2}-(B D)^{2}}
$$

As:

$$
B D=B L-D L=b-c
$$

So:

$$
C D=\sqrt{(c+b)^{2}-(c-b)^{2}}=\sqrt{c^{2}+2 c b+b^{2}-c^{2}+2 c b-b^{2}}=\sqrt{4 c b}
$$

From rectangle CDLP:

$$
C D=L P
$$

Thus:

$$
L P=2 \sqrt{c b}
$$

Similarly :

$$
P K=2 \sqrt{c a}
$$

So:

$$
L K=L P+P K=2 \sqrt{c}(\sqrt{b}+\sqrt{a})
$$

Similarly, from right triangle $\triangle A M B$, where $\angle M=90^{\circ}$, using Pythagorean theorem:

$$
B M=\sqrt{(b+a)^{2}-(b-a)^{2}}=2 \sqrt{a b}
$$

From rectangle KMBL:

$$
B M=L K
$$

Thus:

$$
2 \sqrt{a b}=2 \sqrt{c}(\sqrt{b}+\sqrt{a})
$$

Dividing by $\frac{\sqrt{c}}{2 \sqrt{a b}}$ gives:

$$
\frac{1}{\sqrt{c}}=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}
$$

Or:

$$
\left(\frac{1}{a}\right)^{0.5}+\left(\frac{1}{b}\right)^{0.5}=\left(\frac{1}{c}\right)^{0.5}
$$

