Question 21766

The parallel lines of a trapezium are 25 cm and 11 cm , while its non-parallel sides are 15 cm and 13 cm. Find the area of trapezium.

Solution.

Let $A B C D$ be a trapezium and let $B H$ and $C K$ be the heights. We lose no generality assuming that $A B=$ $15 \mathrm{~cm}, C D=13 \mathrm{~cm}$. It is clear that
$A H+K D=A D-B C=25-11=14 \mathrm{~cm}$ and $B H=C K$.
Since the triangles $A B H$ and $C K D$ are right triangles, it follows from the Pythagorean Theorem that $A B^{2}-A H^{2}=C D^{2}-K D^{2}$.

Taking into account that $A H=14-K D$, we get $225-(14-K D)^{2}=169-K D^{2}$
Thus
$225-196+28 K D-K D^{2}=169-K D^{2}$
and so $K D=5$. Hence $B H=\sqrt{C D^{2}-K D^{2}}=\sqrt{169-25}=12$.
Then the area of the trapezium
$S=\frac{A D+B C}{2} B H=\frac{25+11}{2} 12=216 \mathrm{~cm}^{2}$.
Answer. the area of the trapezium $216 \mathrm{~cm}^{2}$.

