Question

If we take that airplane company sold x first class tickets and y economic class tickets, then we will have:

1. Maximum number of passengers is 200, then $x+y \leq 200$.
2. Baggage for the first class ticket is 20 kg , the total mass of the baggage (if the company sold x first class tickets) is: $20 x$. And we know that the maximum mass of the baggage is 4500 kg , the we will have: $20 x \leq 4500$.
3. Company's profit, which we need to maximize, will be: $500 x+300 y \rightarrow \max$.

So, we have such maximizing problem:

$$
\begin{aligned}
& 500 x+300 y \rightarrow \max \\
& x+y \leq 200 \\
& 20 x \leq 4500
\end{aligned}
$$

We can solve it graphically:

We see that maximum point is B , which has coordinates: $B(x, y)=(200,0)$. It means that the company should sell 200 first class tickets and 0 economic class tickets for maximize its profit. And in this case its profit will be $500 \cdot 200+300 \cdot 0=\$ 100000$.

Answer: company should sell 200 first class tickets and 0 economic class tickets to maximize its profit, which in this case will be equal to $\$ 100000$.

