Question 1. In $V_{3}(\mathbb{R})$ find $\operatorname{dim}(A+B)$ and $\operatorname{dim}(A \cap B)$ where A is the subspace spanned by $(1,1,1)$ and B is the subspace spanned by $(-1,-1,-1)$.

Solution. Note that the vectors $(1,1,1)$ and $(-1,-1,-1)$ are linearly dependent, namely, $(-1,-1,-1)=-(1,1,1)$. Therefore, the 1 -dimensional subspaces spanned by these vectors coincide. More precisely, each vector of A has the form $\alpha(1,1,1)$ for some $\alpha \in \mathbb{R}$ and this vector also belongs to B, because $\alpha(1,1,1)=-\alpha(-1,-1,-1)$. And conversely, each vector of B lies in A by the similar reason. Thus, $A=B$ and so

$$
\begin{aligned}
& A+B=A+A=A, \\
& A \cap B=A \cap A=A .
\end{aligned}
$$

Hence, $\operatorname{dim}(A+B)=\operatorname{dim}(A \cap B)=\operatorname{dim} A=1$.
Answer: $\operatorname{dim}(A+B)=\operatorname{dim}(A \cap B)=1$.

