Question 1. In $V_3(\mathbb{R})$ find dim(A + B) and dim $(A \cap B)$ where A is the subspace spanned by (1, 1, 1) and B is the subspace spanned by (-1, -1, -1).

Solution. Note that the vectors (1,1,1) and (-1,-1,-1) are linearly dependent, namely, (-1,-1,-1) = -(1,1,1). Therefore, the 1-dimensional subspaces spanned by these vectors coincide. More precisely, each vector of A has the form $\alpha(1,1,1)$ for some $\alpha \in \mathbb{R}$ and this vector also belongs to B, because $\alpha(1,1,1) = -\alpha(-1,-1,-1)$. And conversely, each vector of B lies in A by the similar reason. Thus, A = B and so

$$A + B = A + A = A,$$

$$A \cap B = A \cap A = A.$$

Hence, $\dim(A + B) = \dim(A \cap B) = \dim A = 1$. Answer: $\dim(A + B) = \dim(A \cap B) = 1$.