Question 1. Find the dimension of the subspace spanned by the vectors $e_{1}, e_{2}, e_{3}$ in $V_{4}(\mathbb{R})$.

Solution. Recall that

$$
\begin{aligned}
& e_{1}=(1,0,0,0), \\
& e_{2}=(0,1,0,0), \\
& e_{3}=(0,0,1,0) .
\end{aligned}
$$

Prove that $e_{1}, e_{2}, e_{3}$ are linearly independent in over $\mathbb{R}$. Indeed, for any $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}$ we have

$$
\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, 0\right)
$$

So, if $\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}=(0,0,0,0)$, then immediately $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$. Since these vectors are linearly independent, they form a basis of the space spanned by them. Thus, the dimension of this space equals the number of the vectors $e_{1}, e_{2}, e_{3}$, i. e. it is 3 .
Answer: 3.

