Conditions

Integrate $(\tan 2 x+\cot 2 x)^{\wedge} 2 d x$

Solution

1. Transform tan and cot to the sin-cos terms: $\tan =\frac{\sin }{\cos } \cot =\frac{\cos }{\sin }$ and sum.
2. Using the property that $\sin ^{2} 2 x+\cos ^{2} 2 x=1$ and $\sin 2 x \cos 2 x=\frac{1}{2} \sin 4 x$
3. Transform $\frac{1}{\sin ^{2} 4 x}$ into a csc form
4. Using the table integral for $\csc ^{2} 4 x$

$$
\begin{aligned}
& \int(\tan 2 x+\cot 2 x)^{2} d x=\int\left(\frac{\sin ^{2} 2 x+\cos ^{2} 2 x}{\sin ^{2} 2 x \cos ^{2} 2 x}\right)^{2} d x=\int \frac{4}{\sin ^{4} 4 x} d x=4 \int \csc ^{2} 4 x d x= \\
& =4\left(-\frac{\cot 4 x}{4}+c\right)=-\cot 4 x+c
\end{aligned}
$$

